
www.manaraa.com

Fine-scale damage estimates of particulate matter air
pollution reveal opportunities for location-specific
mitigation of emissions
Andrew L. Goodkinda,1, Christopher W. Tessumb, Jay S. Cogginsc, Jason D. Hilld, and Julian D. Marshallb

aDepartment of Economics, University of New Mexico, Albuquerque, NM 87131; bDepartment of Civil and Environmental Engineering, University of
Washington, Seattle, WA 98195; cDepartment of Applied Economics, University of Minnesota, St. Paul, MN 55108; and dDepartment of Bioproducts and
Biosystems Engineering, University of Minnesota, St. Paul, MN 55108

Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved March 7, 2019 (received for review September 20, 2018)

Fine particulate matter (PM2.5) air pollution has been recognized as a
major source of mortality in the United States for at least 25 years,
yet much remains unknown about which sources are the most harm-
ful, let alone how best to target policies to mitigate them. Such
efforts can be improved by employing high-resolution geographi-
cally explicit methods for quantifying human health impacts of emis-
sions of PM2.5 and its precursors. Here, we provide a detailed
examination of the health and economic impacts of PM2.5 pollution
in the United States by linking emission sources with resulting pol-
lution concentrations. We estimate that anthropogenic PM2.5 was
responsible for 107,000 premature deaths in 2011, at a cost to society
of $886 billion. Of these deaths, 57% were associated with pollution
caused by energy consumption [e.g., transportation (28%) and elec-
tricity generation (14%)]; another 15% with pollution caused by ag-
ricultural activities. A small fraction of emissions, concentrated in or
near densely populated areas, plays an outsized role in damaging
human health with the most damaging 10% of total emissions ac-
counting for 40% of total damages. We find that 33% of damages
occur within 8 km of emission sources, but 25% occur more than
256 km away, emphasizing the importance of tracking both local
and long-range impacts. Our paper highlights the importance of a
fine-scale approach as marginal damages can vary by over an order
of magnitude within a single county. Information presented here can
assist mitigation efforts by identifying those sources with the great-
est health effects.

air pollution | environmental economics | marginal damages |
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Exposure to air pollution is linked to many serious health ef-
fects, including respiratory infections, lung cancer, stroke,

and cardiopulmonary disease (1–3), all of which come at great
economic cost (4, 5). The overwhelming majority of estimated
monetized damages from air pollution is attributable to pre-
mature mortality (5); the main contributor is PM2.5. Ambient
concentrations of PM2.5 in the United States have fallen in recent
decades, but devising and prioritizing strategies for efficiently re-
ducing emissions, exposures, and health impacts will yield large
additional benefits. Efficient approaches commonly target those
sources with the lowest mitigation costs [i.e., economic costs per
ton (t) emissions avoided] and the greatest marginal damages [i.e.,
economic damages t−1 emitted]. Here, we focus on the latter. The
health impact of a given quantity of emissions depends on where it
was emitted and where it travels as well as on the physical and
chemical transformations that generate and remove PM2.5 as it
moves through the atmosphere. Marginal damage also depends in
part on “intake fraction” [i.e., the fraction of emissions that are
inhaled (6)], which varies by orders of magnitude among sources,
depending on the size and proximity of populations to sources,
and on the persistence of the pollution.
Here, we use the Intervention Model for Air Pollution (InMAP)

to calculate location-specific estimates of the marginal damages
of emissions from all emission locations in the contiguous United

States (7). These estimates form a series of matrices that de-
scribe linear relationships among multiple emission and impact
locations; we call this InMAP Source-Receptor Matrix (ISRM).
We consider emissions of primary PM2.5 and of four chemical
species—ammonia (NH3), nitrogen oxides (NOx), sulfur dioxide
(SO2), and volatile organic compounds (VOCs)—that react to
form secondary PM2.5 in the atmosphere.
This novel approach integrates a fine spatial scale with in-

formation on the long-range transport of emissions, producing re-
sults with finer resolution in densely populated urban areas (as
small as 1 km × 1 km) and coarser resolution in rural areas (as large
as 48 km × 48 km) for greater computational efficiency. This ap-
proach allows us to identify large spatial gradients in marginal
damages that result from emission location and to model the sub-
stantial impacts of emissions experienced far downwind of sources.
We present our results in terms of the incidence of premature

mortality attributable to exposure to PM2.5 and the monetary
valuation (or damages) of these deaths. Calculating damages
from individual sources of emissions requires three steps: (i)
tracing the air quality impacts of emissions to downwind recep-
tors, (ii) converting changes in pollution exposure to changes in
mortality, and (iii) applying a monetary valuation for changes in
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the risk of mortality. Our key contribution is in step i, which
encompasses providing location-specific fine-scale estimates of
the mortality effects of PM2.5 from marginal changes in emis-
sions, tracing the health impacts back to where the emissions
occurred, and applying the results to a national emission inven-
tory, so as to quantify the impacts of specific emission sources
and emission locations throughout the United States. Methods
we employ for steps ii and iii are straightforward state-of-knowledge
approaches: a linear concentration-response (C-R) function that
estimates changes in mortality from changes in exposure to
PM2.5 (8) and the value of a statistical life (VSL) (9) to translate
increased mortality into monetary damages (see Methods and SI
Appendix, section S1 for details). The use of monetized damages
provides a broader context for understanding our estimates of
exposure and of the impact of emissions and helps us compare
our results with existing estimates in the literature (10, 11).

Results
Our results are in five sections. First, we estimate the monetary
marginal damages ($ t−1) at every emission source location in the
United States. Those findings, which are the core of the ISRM,
reveal the locations where a one-unit change in emissions will
have the greatest impact on health. Second, we combine those re-
sults ($ t−1) with the National Emissions Inventory (i.e., t emitted)
to understand total damages by emission location. Third, we explore
total damages per sector of the economy. Fourth, we estimate
where damages occur in terms of distance from each emission lo-
cation. Fifth, we provide model validation and uncertainty analysis.

Marginal Damages. Here, we estimate the marginal damages of
emissions at every source location in the United States. Damages
attributable to emissions at a specific location vary by pollutant
and release height; we show here (Fig. 1) results for the most
common release height for each pollutant (ground level for pri-
mary PM2.5, NH3, NOx, and VOC; high stacks for SO2). (Results
for other release heights are in the SI Appendix, Table S1.) For
each pollutant, marginal damages vary widely among source lo-
cations with marginal damages generally being higher for emis-
sions released near population centers. Pearson correlation
coefficients between population density at the emission location
and marginal damages are highest for PM2.5 and NH3 emissions
(0.76 and 0.74, respectively) and lowest for SO2 emissions (0.13).
The relatively low correlation for SO2 occurs because this type of
emission more frequently comes from high stacks and more time is
required in the atmosphere for it to form secondary PM2.5, leading
to a greater share of its impacts occurring far downwind of the
source. Primary PM2.5, on the other hand, is often released at
ground level and is already in fine particle form; consequently, a
greater share of its impacts occurs near the source.
Average marginal damages t−1 emitted are $94,000 for primary

PM2.5, $40,000 for NH3, $13,000 for NOx, $24,000 for SO2, and
$7,500 for VOC. The distributions of marginal damages exhibit
positive skew, suggesting that a small quantity of emissions at the
right tail of the distribution has very large marginal damages (SI
Appendix, Table S1).

Combining Marginal Damages with the National Emission Inventory.
The previous section considers impacts per t emitted (ISRM);
here, we combine the ISRM with estimates of actual emissions
(t), taken from the US Environmental Protecton Agency (EPA)
2011 National Emissions Inventory (NEI) (12) to reveal total
damages. We then calculate the distribution of marginal damages,
weighted by the quantity of anthropogenic emissions from each
grid cell. We find that the marginal damages of emissions vary
widely by source location and that emissions from the highest
marginal damage sources, although low in total mass, account for
a large share of total emission damages. That finding emphasizes
the importance of considering sources in terms of their impact, not

just emissions. Impacts, measured as mortality and as monetary
damages per t of emissions, can vary by an order of magnitude
within a single county. The most harmful emissions per t are re-
sponsible for a substantial share of the total damages. For example,
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Fig. 1. Marginal damages of emissions ($ t−1; logarithmic scale) by emitted
pollutant and emission location. Damages are generally higher for emissions
upwind of population centers, but the relationship with population density
varies by pollutant. The value displayed in a location represents the com-
bined mortality impacts (in terms of dollar damages) to all downwind re-
ceptors from 1 t emitted at that location.
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the top 1% and 10% most harmful primary PM2.5 emissions are
responsible for 17% and 54% of the total primary PM2.5 damages,
respectively. The damage per t of primary PM2.5 for the 1% most
harmful emissions is over $900,000—on average, every five t of
these emissions are estimated to cause one additional case of
premature mortality—a 400-fold greater premature mortality rate
per t than that associated with the least harmful 1% of primary
PM2.5 emissions ($4,200 t−1; 2,000 t per premature mortality). The
top 10% highest marginal damage emissions of NH3, NOx, SO2,
and VOC account for 42%, 27%, 21%, and 37% of the total
damages for each pollutant, respectively. For PM2.5 and VOC, the
most-damaging 10% of emissions mass is ∼15× more harmful (for
NH3, NOx, and SO2, ∼5× more harmful) than the 10% least-
damaging emissions mass.
The highest marginal damage emissions are concentrated

almost exclusively in high-population-density areas. InMAP’s
variable-grid-cell design can resolve intraurban-scale spatial gra-
dients in damages; a gradient map at this spatial scale has not
previously been produced for national-scale location-specific es-
timates (10, 11). Here, we explore within-county variation in
marginal damages in terms of the ratio of the marginal damages in
the most- to least-damaging ground-level emission locations within
each county. In the 10% most densely populated counties—
comprising 58% of the total US population—the average marginal
damage ratio within a county is 8.1 for primary PM2.5, 6.7 for NH3,
3.4 for NOx, 1.8 for SO2, and 5.8 for VOC. That is, in these densely
populated counties, primary PM2.5 is on average ∼8×more harmful
per unit in one location than in another location within the same
county. As an illustration, Fig. 2 shows the heterogeneity in mar-
ginal damages for emissions in two large metropolitan areas: Los
Angeles and Seattle. For Los Angeles County, CA, InMAP
uses >1,000 grid cells; estimated marginal damages range from
$52,000 to $2,900,000 t−1 for primary PM2.5 (i.e., a 56-fold dif-
ference). For King County, WA (which contains Seattle, WA),
InMAP uses 374 grid cells, and the marginal damages for pri-
mary PM2.5 span a 127-fold range: $7,000 to $890,000 t−1.
Total estimated annual damages from anthropogenic PM2.5

are $886 billion, corresponding to 107,000 cases of premature
mortality. Primary PM2.5 constitutes the largest share of damages
(38%); the four other pollutants are each associated with 12–
19% of total damages.

Damages by Economic Sector. Connecting the ISRM with an
emissions inventory enables us to next explore the damages by
economic sector and the variability of damages within a sector.

Total damages and incidence of premature mortality by pollut-
ant, economic sector, and emission height (left and right axes,
respectively, of Fig. 3) reveal the multifaceted nature of this
environmental risk factor: Many sources and pollutants con-
tribute meaningfully to total PM2.5. Ground-level emissions
dominate total impacts, of which primary PM2.5 is the largest
contributor. The single largest contribution to total anthropogenic
damages (in Fig. 3) is ground-level release of NH3 from agricul-
ture (i.e., application and storage of manure; fertilizer use), con-
tributing 12% of total impacts. Among impacts from elevated
emissions, SO2 from coal-fired power plants is the largest con-
tributor, responsible for 58% of total damages from elevated
emissions (11% of total damages). Combining major sources as-
sociated with energy consumption [e.g., transportation (28%),
electricity generation (14%)] constitutes 57% of total impacts.
Although total damages from emissions of NH3 and SO2 are each
dominated by a single sector (NH3: agriculture; SO2: coal-fired
power plants), total damages from emissions of primary PM2.5,
NOx, and VOC are not. As no one economic sector dominates
total damages, sizable reductions to PM2.5 air pollution requires
focusing on many sources of pollution. (See SI Appendix, Tables S2
and S3 for total and marginal damages by disaggregated sectors.)
Next, we build on the sector-specific estimates by exploring

within-sector distributions of marginal damages. Analogous to
the findings above, here we find that, for a given sector and
pollutant, marginal damages by sources often exhibit a wide
range of values. For example, for gasoline-vehicle VOC, the 10%
most-damaging emission locations have marginal damages
greater than $22,000 t−1, whereas the 10% least-damaging lo-
cations have marginal damages less than $2,200 t−1, a gap of
more than 10×. The 10th to 90th percentile range for marginal
damages is $12,000–$320,000 t−1 for locations of primary PM2.5
from residential wood burning (difference: >26×), $10,000–
$58,000 t−1 for NH3 emission locations from agriculture (>5×),
$11,000–$33,000 t−1 for SO2 emission locations from coal-fired
electric power plants (3×), and $5,200–$29,000 t−1 for NOx
emission locations from on-road diesel vehicles (>5×). For a
specific sector or pollutant, there are potentially large health
advantages and efficiency gains from targeting the highest-
impact locations. This aspect is especially relevant for difficult-
to-control sectors, such as agriculture, road dust, and residential

Los Angeles, CA

4 8 16 32 64 125 250 500 1,000 2,000

Primary PM2.5 marginal damages ($ thousands t -1)

Seattle, WA

Fig. 2. Within-urban and within-county variability in marginal damages
($ t−1; logarithmic scale) of primary PM2.5 emissions in the Los Angeles, CA and
Seattle, WA regions. The black lines represent county boundaries.
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sion height.
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wood burning: for those sectors, if nationwide emission controls
are unlikely, an alternative approach is to target emission re-
ductions in a small number of high-impact locations. In practical
terms, this could mean focusing greater attention on local policy
in high-impact locations rather than national policy.

Impacts by Distance from Source Location. Results thus far have
considered total damages by emission location, source, or species.
In this section, we explicitly consider where damages occur. As
described next, our results emphasize that local and long-distance
components are both important for estimating total health impacts
from PM2.5.
We estimate—averaging across all locations, sources, and

stack heights, and including primary and secondary PM2.5—that
half of total PM2.5 damages are incurred by people living within
32 km of a source (Fig. 4). (One-third of damages occur at lo-
cations within 8 km of the source; another one-quarter occur
more than 256 km downwind of the source.) That finding em-
phasizes the benefits of the modeling approach employed here
(InMAP and ISRM), which uses variably sized grid cells (as small
as 1 km × 1 km). In contrast, a typical spatial resolution for
conventional air pollution models [chemical transport models
(CTMs) or reduced-complexity models] applied nationally and
for annual averages is 36 km × 36 km grid cells or county level
(the average land area per county in the contiguous United
States is ∼2,500 km2, analogous to 50 km × 50 km grid cells)—
too large to capture spatial gradients amounting to more than
half of total damages. For environmental justice (EJ) analyses
(e.g., consideration of which demographic groups inhale more or
less pollution) an ability to capture near-source gradients may be
especially important. In that case, a second implication of find-
ings here is that conventional models may be too coarse to ad-
equately investigate many EJ questions (13).
Spatial variability differs by pollutant: For primary PM2.5,

more than half of damages occur less than 16 km from the
source; for SO2, more than half are experienced by people living
farther than 200 km from the source. This result suggests that
finer-resolution models are more important for primary PM2.5
and likely are less important for SO2. Another implication is that
for a community aiming to reduce its ambient PM2.5, local (e.g.,
county-level) action may be more successful for primary PM2.5
than for SO2.

Model Validation and Uncertainty Analysis. To evaluate the re-
liability of our model to predict concentrations of ambient PM2.5,
we compare observed year-2011 annual-average concentrations of
PM2.5 at EPA monitoring locations (14) with predicted concentra-
tions from the ISRM, based on emissions from the 2011 NEI (Fig.
5). Average MFB is −6%; MFE is 36%. [These values reflect the
combined impact of errors in the model (ISRM), emission inventory,
and meteorological inputs.] Those bias/error values, which reflect
annual-average observations at the 840 monitor locations through-
out the United States, are well within published air quality model
performance criteria: MFB ≤ ±60%, MFE ≤ 75% (15). That result
supports the use of the ISRM to predict concentrations of ambient
PM2.5. (InMAP performance is better for primary PM2.5 and for SO2
than for NH3 and NOx; details are in SI Appendix, section S3.2.)
We next consider, in turn, uncertainty in the three main inputs

to our calculations: the ISRM, the C-R function, and the VSL.
First, we characterize error in the ISRM PM2.5 concentration
predictions and resulting mortality estimates as above: based on
model-measurement comparisons (Fig. 5). Specifically, for the
error in each ISRM spatial prediction of PM2.5 concentration, we
employ the model-measurement error at the nearest EPA
monitor (see SI Appendix, section S1.5 for details and 95%
confidence interval estimate of mortality using similar methods).
The total estimated mortality from this sensitivity analysis is
99,000, or 8% less than our base-case estimate (107,000). Errors
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estimated in this method differ by sector; for example, mortality
in the sensitivity analysis (relative to in the base case) is 11%
lower for emissions from industrial processes but only 3% lower
for coal-fired electric generation.
Second, we explore uncertainty in the C-R function, first by

using a deterministic method (employing an alternative C-R
function) and second by using a Monte Carlo simulation
(adopting the reported 95% confidence intervals reported for
regression coefficients from the underlying epidemiological
study). For the first method, we replace the base-case C-R [from
Krewski et al. (8)] with the C-R from Nasari et al. (16). The
result is that total estimated mortality increases 21% to 129,000.
This shows that our base-case estimates are of comparable
magnitude but lower than the estimates using another authoritative
C-R function. For the second method (Monte Carlo), the resulting
95% confidence interval [and interquartile range (IQR)] for total
mortality is 44,000–171,000 (85,000–129,000).
Third, we explore uncertainty in the VSL. The VSL employed

here is the mean of estimates from several studies (9). We em-
ploy a Monte Carlo analysis by using the distribution of these
studies’ estimates. The resulting 95% confidence interval (IQR)
for total damages is $90 billion to $2.3 trillion ($460 billion to
$1.2 trillion).
To summarize, 95% confidence intervals associated with the

three main inputs for total damages (base-case estimate: $886
billion), in units of $billions, are 90–2,300 for the VSL, 360–1,400
for the C-R function, and 830–930 for the ISRM. (See SI Ap-
pendix, section S1.5 for details.) Those findings suggest that
uncertainty is greatest for the VSL, smaller for the C-R function,
and smallest for the ISRM.

Discussion
Here, we estimate the mortality impacts of PM2.5 air pollution in
the United States. Our approach advances the science by (i) de-
veloping a fine-scale source-receptor matrix (the ISRM), which
simulates impacts near to the source and far from the source, (ii)
using the ISRM to explore impacts by emission location, chemical
species, and source category, and (iii) studying this topic nation-
ally, with unprecedented spatial resolution. This approach was
possible because of the computational efficiency of InMAP;
analyses here would not be feasible with conventional CTMs (see
Methods section).
The existing literature on intake fraction documents that

damages t−1 can vary widely, depending on release location (17–
19). Some of our results have similar utility as intake-fraction
values but usefully extend beyond that literature by, for example,
calculating health impacts and monetized damages, accounting
for all PM2.5 (primary and secondary) from all sectors of the
economy, employing a much finer spatial resolution for a na-
tional analysis, developing the source-receptor model, and in-
tegrating the source-receptor model with the NEI.
Our estimates of total damages from anthropogenic PM2.5

($886 billion associated with 107,000 deaths in 2011) are similar
to values reported elsewhere. For example, Fann et al. (20) es-
timated 130,000 deaths from PM2.5 in 2005. The Institute for
Health Metrics and Evaluation (21) estimated 90,000 US deaths
from PM2.5 in 2015. In addition, Heo et al. (11) conclude that
total damages in the United States are $1.0 trillion per year,
similar to our estimate. Comparisons to specific locations,
sources, or chemical species may reveal larger or smaller dif-
ferences. For example, we estimate ∼3× higher marginal dam-
ages of SO2 from coal-fired electricity-generating units than a
report by the National Research Council (22) but find a similar
geographic distribution. Our estimate of the share of total PM2.5-
related mortality from mobile sources (34%) is higher than the
share from Fann et al. (23) (22%), but we estimate a similar
share from electricity-generating sources [17% of total (ISRM)
vs. 22% (Fann et al. (23)].

Our results emphasize the benefits of finer-scale spatial res-
olution, relative to the typical spatial resolution of conventional
models. To further explore this issue, we recalculate our core re-
sults but using coarser fixed-size grid cells of 48 km × 48 km, rather
than the smaller variably sized grid cells of our main approach (see
SI Appendix, section S1.6 for details). Resulting estimates for total
damages from PM2.5 are ∼20% lower with the coarser grid than
with our main approach; analogous differences are larger for
mobile sources (27% lower) and residential wood burning (34%
lower) with nearly zero difference for emissions from coal-fired
electricity generation. The difference with the coarser grid com-
pared with our main approach is nearly zero for low-damage lo-
cations and for elevated sources but is relatively large for high-
damage locations. For example, the highest estimated marginal
damages t−1 for primary PM2.5 are $523,000 (coarser grid) vs.
$919,000 (main approach). Thus, the sensitivity analysis supports
the use of smaller grid cells for modeling spatial variability in
damages and especially for discovering high-impact locations.
The approach we present here has several limitations in addi-

tion to the uncertainties highlighted in the Results section. We do
not account for differing effects of air pollution by season, and our
model currently does not track all harmful air pollutants, such as
ozone. Seasonal differentiation may be important where emissions
and rates of PM2.5 formation both vary by season [e.g., seasonal
fertilizer application (agricultural emissions) in an area where
ammonium or nitrates are rate-limiting species during different
times of the year]. InMAP partially accounts for seasonality in
how it tracks annual-average impacts, but if a location has emis-
sions that exhibit seasonal patterns, use of an annual-average
impact for that location could induce bias in the estimated im-
pacts. This aspect is worthy of investigation and quantification
using a different model than the one employed here. Exposure to
ozone is also associated with increased risk of premature mortal-
ity, but those risks are generally small compared with the esti-
mated risk from PM2.5. For example, Fann et al. (20) estimate that
attributable mortalities are ∼30× greater for PM2.5 than for ozone.
Many minor local emission sources can contribute to ambient

pollution, including fireplaces, cooking, and lawn care. Our ap-
proach includes those sources, which are in the NEI, but our
model does not capture near-source exposures for which the
relevant exposure travel distance is much less than the length
scale of our model (1 km to 48 km). Such exposures include, for
example, a cook directly inhaling grilling exhaust, a pedestrian
directly inhaling emissions from a nearby vehicle’s exhaust
plume, or lawnmower-engine exhaust being directly inhaled by
the person mowing a lawn. These ultra-near-source exposures
are high concentration but generally short duration. Our ap-
proach does not include direct indoor inhalation of indoor
sources; in some circumstances (e.g., “second-hand” cigarette
smoke), indoor exposures can dominate total exposures.
We use the VSL from the US EPA to convert changes in

mortality risk to monetary damages. This approach is a common if
controversial method. Other literature review estimates of the VSL
are consistent with the EPA VSL employed here (24, 25). Alter-
native (i.e., non-VSL) valuation methods are available, for example,
considering years of life lost (“value of a statistical life year”) or
accounting for morbidity and mortality using “disability” adjustment
factors (“value of a disability-adjusted life year") (26). These are
important considerations that deserve attention in future analyses.
Uncertainty is relatively large in the C-R function and in the

VSL: the range of the 95% confidence intervals is a factor of 4
and a factor of 25, respectively. Such uncertainties are inherent
in estimates for any one location, emission source, or pollutant;
however, they do not impact the relative damages for one source
compared with another source. There is potentially spatial and
demographic variabilities in the C-R function and the VSL as
well. For example, perhaps people in a certain neighborhood are
highly susceptible to health impacts from air pollution. In that
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case, emission locations that lead to pollution in that neighbor-
hood would have greater-than-average impacts. The same may
be true for certain group’s valuation of increased risks of mor-
tality. To the extent that this variability can be estimated, there is
also an ethical consideration regarding how that variability
should be included in the types of analyses we produce here.
Similarly, as fine-scale estimates of pollution exposure become
available, policies that use this information to target reductions
in certain locations and not others raise important questions of
fairness in environmental quality.
PM2.5 is the largest environmental risk factor in the United

States, causing >100,000 premature deaths per year—more than
traffic accidents and homicides combined (27). Reducing PM2.5
concentrations is aided by prioritizing among emission sources:
which sources to reduce and by how much. The fine-scale
damage estimates given here reveal new opportunities for
location-specific mitigation of emissions. However, any policy
implementation would need to consider trade-offs between the
benefits of targeted emission reductions and the additional reg-
ulatory burden caused by location-specific policy. The ISRM is
novel in connecting ambient concentrations and damages with
the emission locations, sources, and species causing those con-
centrations and damages nationally and at a spatial resolution
not previously possible. The new spatial resolution reveals, at a
national level, large spatial gradients in damages, including
within county and within urban. These new results are useful for
(i) more-efficient environment policy (i.e., using emission-
reduction policies, permitting decisions, and enforcement ac-
tions to reduce highest-impact sources, locations, and species),
(ii) investigating EJ (i.e., understanding which groups are more/
less exposed and proposing policies to address potential undue
burdens), and (iii) correctly estimating the magnitude of dam-
ages because results here account for near-source and long-range
exposures. We have made the ISRM freely available online (28)
with the hope that researchers and practitioners will find it useful
for studying connections between changes in emissions and
changes in concentrations and damages.

Methods
The primary innovation of this paper is creating the ISRM, a dataset containing
estimates of linear relationships between marginal changes in emissions at

every source location and marginal changes in annual-average PM2.5 con-
centrations at receptor locations. Because of computational intensity, our
approach would be infeasible using a conventional air pollution model. We
built the ISRM by running InMAP >150,000 times (7), each time inputting a
1-t emission change from a single grid cell. In total, our analyses required 46
d of model run time. An analogous set of runs using a CTM would take
∼2,000 y with contemporary computational software based on the Weather
Research and Forecasting/Chem model configuration used to inform InMAP
(29) (see SI Appendix, section S2 for details). The results of each InMAP run
describe the isolated impact of a 1-t emission change at the source upon
PM2.5 concentrations at every receptor grid cell in the model. This process is
repeated for all 52,411 grid cells in InMAP and for each of three effective
emission heights: ground level (emissions between 0 and 57 m), low (57–
379 m), and high (>379 m). InMAP is designed with grid cell sizes that, for
computational efficiency, vary based on spatial gradients in population
density. The primary grid cell unit is 48 km × 48 km and is used in sparsely
populated regions to achieve greater computational efficiency. For areas
with progressively denser populations, the grid cells have dimensions with
24-, 12-, 4-, 2-, and 1-km sides. The ISRM, as described here [version 1.2.1,
freely available for download at zenodo.org (28)], was created using InMAP
version 1.2.1 (https://github.com/spatialmodel/inmap).

Here, we estimate the marginal monetary damages associated with pre-
mature mortality owing to emission of an additional t of a pollutant at a
location. We adopt a linear C-R function to convert changes in PM2.5 con-
centrations into adult all-cause premature mortality (8). We use the US EPA
recommended VSL of $8.3 million in year-2011 US dollars to assign monetary
values to changes in the risk of mortality caused by pollution (9). To calculate
total damages, we multiply marginal damages by the total anthropogenic
emissions in each grid cell, taken from the US EPA 2011 NEI (12). We estimate
anthropogenic emissions of each of the five pollutants for each InMAP grid
cell, each emission height, and each of 12 sector groupings. Additional de-
tails on the methods are in SI Appendix, section S1.
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